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A mechanism is proposed whereby planetary zonal flows can be generated by 
the resonant interaction of Rossby wave packets whose amplitudes are slowly 
varying functions of both space and time. Equations are derived describing the 
long-time behaviour of a resonantly interacting triad. At the first closure certain 
properties analogous to those already known for discrete waves are deduced. At 
the second closure, in the particular case when one of the members of the triad 
is a zonal flow, it is shown that the sideband resonance mechanism can cause 
energy to be gained or lost by this zonal flow. It is also shown that a single Rossby 
wave packet can exchange energy with a zonal flow with weak shear. In  the final 
section a resonant quarter mechanism for producing zonal flows is discussed. A 
numerical estimate of the acceleration of a zonal current from a zero initial state 
gives values of a few km/day per day. 

1. Introduction 
Non-linear wave interactions have been the subject of many studies in recent 

years. The first model used was one of discrete waves and Phillips (1960) showed 
that a gravity wave can be excited by three existing waves provided certain 
resonance conditions are satisfied. If the resonance conditions are not satisfied, 
then each wave undergoes only modal interactions which, in a conservative 
system, alter only the phase. In  gravity waves an example of a non-linear modal 
interaction of a wave with itself is the well known Stokes wave. Interactions 
between a continuous spectrum of random gravity waves have been studied by 
Hasselmann (1962) who showed (using the Gaussian assumption) that the 
mechanism for energy interchange was the same as that proposed by Phillips 
but that the time scale required was longer. Subsequent analysis using the 
statistical approach by Benney & Saffman (1966), Benney & Newel1 (1969), 
showed that the Gaussian assumption was in fact unnecessary when dealing with 
any system supporting dispersive waves. 

More recently, Benjamin & Feir (1967) while trying to produce the Stokes 
waves experimentally found that it was unstable. The cause of the instability 
is the excitation of sidebands of the basic mode at  the expense of the discrete 
mode itself, Consequently, when dealing with wave interactions in systems 
which can support a continuous sectrum, the wave packet (group, train) concept 
is required. Mathematically, this is modelled by allowing the amplitudes of the 
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waves to be slowly varying functions of position as well as time. Among the 
class of allowable functions are the discrete sidebands used by Benjamin & Feir. 
Using this approach it was shown by Benney & Newell (1967) that in most cases 
a discrete analysis is incapable of adequately predicting the long-time behaviour 
of these wave systems. 

We now apply these ideas to a triad of Rossby wave packets. In  this analysis 
we are not concerned with how the Rossby wa;ves came to exist; but being a form 
of neutrally stable inertial oscillation on a rotating earth, we recognize that they 
can exist and that in the P-plane approximation their spectrum may be con- 
sidered continuous. The waves probably arise from a baroclinic instability 
discussed by Charney (1959) and Miles (1964). A complete analysis should in- 
clude a description of the generation of these waves from the instability of a 
shear flow and the resulting reinforcing of the shear flow by the action of the 
waves. However, our main concern here is with the latter problem, namely how 
energy in wave form can be converted into energy of the mean flow. It has been 
noted by Longuet-Higgins & Gill (1967) that if the waves are truly discrete, 
then due to the vanishing of the coupling coefficient, the triad resonance mechan- 
ism cannot be responsible for exciting zonal flows. The zonal flow merely acts 
as a catalyst for energy exchange between the other two members of the triad. 

In  contrast to the discrete wave approach, it will be shown that it is possible 
for the waves neighbouring the resonant waves to excite zonal flows on a longer 
time scale. A completely analogous situation is found to exist for a random 
continuous spectrum (Benney & Newell 1967) where, a t  the first closure, the feed 
to a zonal flow is zero due to the vanishing of the coupling coefficient. However, 
at  the second closure a direct feed to the zonal flow is possible, arising from wave 
vectors in the local neighbourhoods of the resonance curves. 

In the present analysis, the first cIosure gives the purely resonant interactions 
which do not feed zonal flows, whereas the second closure exhibits the sideband 
resonance. Numerical estimates, discussed in the appendix, of the acceleration 
of zonal currents yield accelerations of a few km/day per day. The possibility of 
planetary waves being the driving mechanism for the Cromwell current is also 
discussed. 

Since the interaction with zonal flows occurs a t  times t = O(1/p2) (where p 
is the order, of both the non-linearity and the packet spread), we must also 
consider quartet resonances where effect is first felt at  this time scale. In  the 
final section it is shown that it is possible for zonal flows to be excited in such a 
way. 

2. Formulation of equations 
UTe choose as our model the nondivergent P-plane approximation where 

(x,y) represent the horizontal co-ordinates measured in the east and north 
directions, respectively. Following Longuet-Higgins (1965) we write the com- 
ponents (east, north) of velocity (u, V )  

u = a@lay, v = -a@/ax, (2.1) 
where 9 = -sf[lf ( 2 . 2 )  
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and g, g and f denote the surface elevation, gravitational acceleration and.the 
Coriolis force (2Q COB 0; Q being the earth's rotat'ion and 0 the co-latitude). A 
discussion of the validity of this approximation is given by Longuet-Higgins 
(1965) and we refer the reader to that paper for details. 

From the conservation of potential vorticity following a fluid particle, we have 

where DIDt denotes the substantial derivative and h the mean depth. This leads 
to the following differential equation for $, where only the non-linear terms 
representing the horizontal advection of vorticity have been retained consistent 
with the j3-plane approximation: 

where a2 =f"loh, p = dfldy, (2 .5 )  
are treated as constants. 

wave (i.e. no second harmonics generated). 
It is easily verified that (2.4) permits as an exact solution the westerly travelling 

@ cc eie, (2.6) 
where I e = Ic,x+k,y-wt, 

w = -plc,/(a2+k2).  

Longuet-Higgins & Gill (1967) examined the interaction of these discrete waves 
and noted that because of the existence of resonance conditions energy can be 
transferred from one component to another. The resonant conditions are that 
there exist classes of triads, k,, k,, k,, such that k, + k, + k, = 0 and 

w(kl)+w(k2)+w(k3) = 0 

are satisfied simultaneously. The existence of such triads in the case of Rossby 
waves was first pointed out by Kenyon (1964) and later with much detail by 
Longuet-Higgins & Gill (1967). However, it has been shown by several authors 
(Benjamin & Feir 1967; Whitham 1967; Phillips 1967; Benney & Newell 1967) 
that a discrete wave analysis may not be relevant due to the possible instability 
of neighbouring sidebands. It has also been noted by Benney & Newell (1967) 
that energy can be transferred to the side-bands of a discrete wave on the same 
time-scale as energy goes to the discrete wave itself by the non-linear resonant 
transfer mechanism. 

Following the latter authors we begin by considering as our basic solution the 
three wave packets 

3 

j = 1  
$ = C aj(X, T) exp [itYj] + (complex conjugate), (2.8) 

where the amplitudes a j  are slowly varying functions of position (X = px; 
,u -g 1) as well as time (T = pt) .  We restrict the a's to be at  most bounded func- 
tions of X for large X. The interesting balance occurs when the length-scale ,u 

17 Fluid Meoh. 35 
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corresponding to the package is of the same order of magnitude as the non-linear 
terms. 

With the introduction of the additional time and length scales 

Tl = /d ,  T2 = p2t, X = p ~ ,  x = (x,Y); (2.9) 

the differential operators transform accordingly 

a a  a a - - +/G - + p2 - , 
at at aT, aT2 i (2.10) 

Since these operators are to be applied to the functions a(X,  Y ,  TI ,  T,) eio, we 
have 

where 

Similarly 

where 

3. Analysis 
The basic equation (2.4) reads 

where the operators a/at, a/ax,  a/ay are given by the transformation (2.10). It is 
easy to see that, with the basic solution consisting of the three packets with reson- 
ant phases Bj = k j x x  + kj, y - w j t ,  w j  = w(kj) where 8, + 8, + 8, = 0, the non- 
linear terms generate modes with the following phases: 

( 3 4  } 
0,+0, = -ol, e,+4 = -02, o1+0, = -03, 
8, - 0, = 0,, e, - 8, = 05, 0, - 8, = 0,. 

Thus we have three resonances and three new modes. We note that 
8,= k 4 , ~ + k 4 , y - d 4 ) t ,  k,=  kl-k,, d4)=0  1 2  --w 

and ~ ( k , )  = w4 $. d4). We use the superscript on the frequencies of the modes 
4, 5 and 6 in order to emphasize that the frequency response of these modes is a 
forced and nut a natural one. 

We expand the dependent variable $ 

$ = $,+p$l+pu”$,i- .... (3.3) 
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We begin with 
J 

$o = a j ( X ,  T )  exp [iej] + (complex conjugate), 
j=1 

which generates a $, containing three new modes 
6 

with the following side conditions chosen in order to remove secular terms: 

259 

(3.4) 

where ( I ,  m, n) is cycled over ( 1 , 2 , 3 ) ;  cl is the group velocity of the wave 

kl(klZ7 4,)) 
and k, x k, is the vector product (k,, k,, - k,, kZz) and the operator V is (ajax, a/@).  
The asterisk (*) has been used to denote the complex conjugate. 

If we had been dealing with discrete waves, the group velocity terms would be 
absent. Benney & Newel1 (1967) showed by looking a t  the stability of the exact 
solution 

1 -  , ,  a 2 = 0 ,  a 3 = 0 ,  

that there exists a wave number neighbourhood in which the side-bands of waves 
k, and k3 can grow exponentially. Thus in dealing with wave packages where the 
package spread is the same order of magnitude as the non-linearity, (3.7) is the 
relevant equation. 

Although no general solution of this equation set is known, we observe some 
properties which are somewhat similar to the case of discrete waves. We begin 
by noting that the operator (a/aT,) + a.  V (a  constant) acting on the function 
g(X, T )  describes the change in g(X, T) along the straight line X - aT, = constant. 
Thus the left-hand sides of (3.7) denote the change of amplitude along group 
velocity lines X - c,T, = constant, I = 1, 2, 3. If there were no non-linear inter- 
actions terms, then (3.7) would simply say that the amplitudes (equivalently 
energies) of the packages moved with their respective group velocities. We will 
denote (a/aT,) + c,. V by Zl. It is easily seen that 

~l(a2+k~)rra ,a~+Z,(a2+k~)rra ,a ,*+~' ; (a2+k~)na ,a ,*  = 0, (n = 1,Z). (3.8) 

For n = 1, the above relation says that the sum of the changes of energies of the 
three modes along their respective group velocity lines is zero; in the ease of 
discrete waves this relation can be integrated to yield that the total energy is 

a - 

17-2 
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constant in time. For n = 2,  the above relation describes the ‘conservation’ of 
the square of the vorticity perturbation. We can also show 

= 2dRe(u,a,a,), (3.9) 
where d = k,x k, = k,x k, = k2x k,, since k,+k,+k, = 0. 

Equations (3.9) are equivalent to the energy sharing equations of Benney 
(1962) developed for the case of four interacting discrete gravity waves. The 
equations relate the change in energy of one package along its group velocity 
lines to the changes of the other wave packages along their group velocity lines. 

It was noted by Longuet-Higgins & Gill (1967) that the resonance mechanism 
of two discrete waves producing a third could not be responsible for producing 
time-independent zonal flows. One Fourier component of a zonal flow could be 
thought of as a wave k, = (0 ,  - Zk,), as the natural frequency response of this is 
zero from (2.7). The waves that resonantly interact with this are k, = (kz, ky) 
and k, = ( - k,, ky). However, since the moduli of these two waves are equal, we 
have 

where 

(3.10) 

and thus k, acts as a catalyst for interaction between k, and k, but does not gain 
or lose energy itself at this time scale. We now propose to show that at  a later time 
scale t = O(1/p2) through the action of resonating sidebands it is possible for 
zonal flows to be excited. 

In  order to see this we must proceed to the O(p2) balance in the governing 
equation (3.1) where in order to eliminate secular terms we must choose 

2i aa k,. V ]  aa, iw2 
aT2 a 2 + k f  a +k: aT, 

- i  
-- - [(ki - kg) {a$(k, x V) a: - a,*(k, x V )  a;} 

a2 + k2, 
+ 2( k, x k,) {a: k, . Va,* - a$ k, . Va,*}] 

x k2) (k: - k;) (k, x k2) (k; - k 3  a 2 2  a* 
a2+ k2, w(~)( k: + a’) + /3k42 
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plus two similar equations found by cycling ( 1 , 2 , 3 )  and (4 ,5 ,6) .  Use of the first 
closure (3 .7)  permits us to write 

aa, i QT:',a, = 22 --z [ (k i  - k3{a,*(k3 x V)ag - X V ) a f }  aT2 2 a +k ,  

+ 2(k1 x k,) {a; k3 . Vag - a: k,  . V a f } ]  

2i x k3) (k i  - k2)  k , .  Vaga:] +- ~ a2 + k: Pk2 (a2 + k;)2 

where Q Y p  is the dispersion tensor quadratic differential operator 

Noting that 

we have for the full closure describing the behaviour of the system for times 
0 < t G 1 / p ,  

= d,a~a~+ipfi{a*,(k,  x V)a;%-a$(k,x V)az]  

+ ipg,{a: k3. Va: - a: k, . Vag} 

+iphzk l .Va~a~+ipaz(p l~ ,a ,a~+p, ,a ,a~) ,  (3 .14)  

where (I, m, n) is cycled over ( 1 7 2 , 3 )  and d,,+fl, g,, 4, pz,n and pzn may be read from 
(3.12).  

The triad we wish to consider 

has the properties k2, = k:, w3 = 0,  and thus 
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The equations (3.14) reduce to 

(3.15) 

(&+C, .V)  a,-dla2a3 * * - - - Q X P a l + p N . L .  ilu (1) 

(>$+c2.V) a,+d,aTa~ = - Q X Y a 2 + p ~ . ~ .  iP (2) 

terms, 

terms, 

2 

2 

(:p + c32 A) a3 = ipg3{a;" k, . Va: - a: k, . VaT}. J 
The relevant question to ask is whether the solutions to the set (3.15) differ 

only by O(y)  uniformly in time (for all times in the range 0 < T < ljp) from the 
solutions of the equations 

(3.16) 

or, equivalently posed, can we solve (3.15) by regular perturbation series in 
which the first terms are given by the solutions to (3.16) Z Now ordinarily with 
second closures this is not the case, but we must ask the question for two reasons. 
The first is that the operator on the left-hand side tends to shift the waves off 
their basic resonance as the amplitudes move with the different group velocities 
whereas, secondly, the existence of non-trivial solutions to the first closure may 
preclude some terms of the second closure from being genuine secularities. By a 
genuine secular term we mean one which affects the order one term in the per- 
turbation expansion. 

First, let us consider the q(X, T) (I = 1 , 2 , 3 )  bounded functions for large X 
(e.g. periodic function, random function). Consequently we can view a,(X, T) as 
made up of a set of discrete {exp [ik,X]) waves or as stationary random functions 
of position where we spectrally analyze the correlations (a,(R, T) a,(R + X, 2')). 
From either point of view we see the first response from (3.16) can be written 

exp [i(K . X - vT)], 
where (treating a;') as a constant) 

v = +(cl+c 2) . K  k $[((c,-c~) .K)2+ 4 d : l ~ L ~ ) 1 ~ ] $ ,  

or (if abo) were zero initially) 

We could then generate resonance conditions, for if 

= c,.K or c,.K. 

a:') oc exp {i(K, . X - cl.  K, T)}, 
a?) cc exp {i(K,. X - c,  . K, T)}, 
up) cc exp{i(K,.X-c3.K3T)}, 
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aJ1) would grow as pT (random system would respond in time T = 0[lIp2]) if 

Kl+K2+K3 = 0, C ~ . K , + C ~ . K ~ + C , . K ,  = 0. 

Essentially, one could view (3.15) as a coupled system supporting dispersive 
waves. However, it is well known that a non-dispersive system produces a much 
stronger lion-linear response; this is perhaps best understood from the statistical 
viewpoint where the initial triple and higher correlations between waves do not 
decouple after long times if k, + . . . + kl = 0 implies w1 + . . . + wL = 0. In fact, if 
the amplitudes a ( X ,  T) are decaying functions of X for large X, thus permitting 
continuous Fourier integral transforms, then the only secular non-linear response 
arises when the waves are non-dispersive. We can make this choice by asking that 
the amplitudes are initially y-independent and by choosing the vector k, such 
that cQZ = ch. This corresponds in the short wave case (k2 9 a2) to choosing the 
argument 8 of k, (k, cos 8, k, sin 8) to be 52.8”. For waves of arbitrary length the 
locus is given by the equation (real 8 roots for h2 < 4 2  + 1)  

8sin4B+(Gh2-4)sin28+(h4-22h2-1) = 0, h2= a2/kI. (3.17) 

With the above choice and using the simple transformation 

X‘ = X-c,,T, T’ = T (3.18) 

the equation set (3.15) becomes 

(3.19) 

If we try to solve (3.19) by the regular perturbation series 

we obtain 
a 1 - - a(o) 1 +pa$’)+... ( Z  = 1,2 ,3)  (3.20) 

(3.21) 

a p  = a y ( X ‘ )  
ai0) = C ZI(O)~(X’) exp{isd,Ia~o)(X’)IT’}, 

s =  i-, - 

Clearly, in the product (a/aX’)aio)*u~o)* there are terms which are independent 
of T’ and thus on integration of 

aa‘,O)/aT’ = f(x’, T’) + g(x’) 
we find that the perturbation series (3.20) becomes non-uniform in time. This 
merely indicates that the terms arising in the second closure do affect the per- 
turbation series at the zeroth-order and must be considered as fully secular. 

We summarize the results as follows: if the initial amplitudes are bounded but 
order one for large X, then we expect that due to the possibility of secondary 
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resonances we will get an energy transfer to the zonal flow on the time scale 
t = O( l / , u 2 ) ;  if the initial amplitudes are decaying at large X such that they possess 
continuous Fourier integral transforms, then we expect an energy transfer to the 
zonal flow on the same time scale only when we make the choice (3.17). In  an 
analysis of the interaction of random waves whose dispersion relation permitted 
triad resonances, Benney & Newell (1969) found that zonal flows could be ex- 
cited at  the second closure time scale [ ( t  = O(1/p4)J. 

4. Breakdown of a single Rossby wave packet 
Due to the fact that a single discrete wave is an exact solution of (3.1) we can 

treat the non-linear terms as the same order of magnitude as the linear ones when 
we look at the interaction of a wave packet and a zonal flow with weak shear, 

(4.1) } 
@co = a ( X ,  T )  eis + a * ( X ,  T )  
@ = k,x + k,y - wt, 

b ( X ,  T ) ,  
b ( X ,  T )  real. 

The scales are defined as before 

X = px, Tl = pt, T2 = pat, (4.2) 
where ,u is a measure of the package spread. 

The governing equation is the same as before except that E ,  which measures 
the relative magnitude of the non-linear terms and which in the previous case 
was small, may now be order one. 

wherealat, a/ax, slay are given by the transformation (2 .10) .  As before we make the 
perturbation 

(4.4) @ = @ 0 + ~ @ 1 + ~ 2 @ 2 + . * . .  

We find at the O(p) balance $1 = 0 (4.5) 
and in order to eliminate secular terms, we choose 

aa ik.2 
- + c . V a  = -- a(k x V ) b ,  aT1 a2 + k2 

I ab -++O.Vb = 0, C ,  = ( - p / ~ l ' , O ) .  
aT1 

As before, a t  the first closure, the zonal flow is not affected but acts as a catalyst 
in changing the phase of a ( X ,  T ) .  Note that 

ha* -+c .Vaa*  = 0. 
aT1 

(4.7) 

Eliminating secular terms at the order p2 balance yields the second closure 

i -_ + - VZa----  -- [ (k x V )  b] [k .Val - ~ k2 V a x V b ,  2 
aT2 ct2+k2 a2+ 7c2aTl &+ k2 a2+ k2 

- 2ikV aa 

ab 2 
- = - - ( k x V ) k . V a a * .  aT2 012 
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Using (4.6) and the fact that 

apT = a j a q  + p ( a p 2 ) ,  
we may write the full closure which will govern the behaviour of the system to 
times t = O( 1/p2), 

a ( k x V ) b  aa iP - + c . V U - - Q X F U  = ___ 
aT 2 a2 + k2 I 

2 [(k x V) b] [ k .  Val 
L 

(4.9) 
k .  V[a(k x V) b] - ~ k2 V u x V b ] , l  2k2 

( a2 + k2)2 a2 + k2 
+ 

Again, we give a simple example to show in general these equations cannot be 
satisfied by a regular perturbation series 

a = a(O)+pca(l)+ ..., 
b = b(')+pb(l)+ ..., 

where a@), b(0) are solutions of the set 

Equation (4.10) yields that 
d0Wo)* = f ( X  - cT),  

and suppose we choose as initial condition 

then 

= g(X-c0T).  
Thus the simple transformation 

yields 
ab(1) 2 
~ = - - ( k  x V') k .  V'g(X') aT' a2 

(4.10) 

(4.11) 

and hence grows like T'.  
We conclude that after a time t = O( 1/p2) a fully non-linear wave package with 

a small spread can feed energy to a mean zonal flow with weak shear. However, 
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since the physical quantities such as velocity depend on the gradients of the 
stream function, the order of magnitude of the velocities generated is less than 
that of the wave amplitude. 

5. Quartet resonance mechanism 
In this section we deal kinematically with the excitation of a zonal flow by a 

direct quartet resonance mechanism. Let us consider the four waves ki(kiz, kiu) 
(i = 1 , 2 , 3 )  and k4(0, k4u). From the existence of triad resonance, we know we 
can find triads {li} (i = 1 , 2 , 3 )  such that 

11+12+13 = 0, 
w(ll)+w(12)+w(13) = 0. 

k, = 1, = ( l lZJIU)?  
k, = 12 = ( 1 2 r , l ? u ) t  
k3 = v3.m - l3A 
k4 = (0, 213u). 

Let us now choose 

It is clear that, 
Consider 

kl+k2+k3+k4 = 0. 

4%) + w(k,) + ( 0 3 )  + 4k4) 
= (41,) + o(1,) + w(z3z, - Z3J + 0 = o(1,) + o(1,) + w(1J = 0, 

since w(kz,  - ku) = w(kz,  k,) from (2.7). Thus a t  the order ,u balance in (3.1) we 
generate non-secularily the following wave components 

exp{i(k,+ k 3 ) . ~ - i ( ~ 1 + ~ 3 ) t } ,  exp{i(k,+k,).x-i(w,+w,)t}, 
with coupling coefficients (k2,- ki) (k, x k3) and (kg - k$) (k, x k3) respectively, 
and secularily the component 

exp {i(k2 + k,) . x - i(w2 + w l ) t }  
w(k,+k2) = u ( l l + l p )  = -w(13) = w(l,)+w(l,)  = w(k,)+w(k,). as 

This non-uniformity is removed by the usual techniques described in 0 3. 
However, at the O(,u2) balance, the former two wave components react with 

the basic modes 

respectively, each coupling generating in secular fashion the Fourier component 
exp { - ik, y} of a zonal flow. The non-zero coupling coefficients are 

exp {ik, . x - iw2t},  exp {ik, . x - iw,t} 

11+12+13 = 0 

(1, + 13) x 1, = 0, 
(k, + k3) x k, = (1, + 1, - 2k4) x k, = - 2k4 x 1, + 0. 

implies 
then 



Rossby wave packet interactions 267 

We conclude therefore that at the second closure we expect two types of terms 
forcing the zonal flows; the first is the sideband resonance mechanism dealt with 
in earlier sections and the second due to a quartet resonance. 

6. Discussion 
For a set of N interacting discrete waves in a weakly non-linear conservative 

physical system, the differential equations governing the amplitudes are well 
known. If the wave vectors are k, (1 = 1,2,  ..., N )  with complex Fourier ampli- 
tudes A(k,, t ) ,  these equations are: 

+ is2 (C K2 (k,, k, - k,) A(krt) A(k,,t) A*(kp,t)) 
P 

+ C K3(kQ,k,,ks)A*(kQ,t)A*(k,,t)A* (ks, t )+O(s3) ,  (6.1) 
k + t + t + k I = O  

where g(kl)/f(k~) = w,, the frequency of the linear system. Equation (6.1) is readily 
modified to describe wave packets when the complex amplitudes A(k,) become 
slowly varying functions of space and time, namely 

A, = A (k,> t 7  x, T2) 7 

where X = px; 
original equation in physical space is modified by the transformations, 

= pjt (0 < p 4 1). Using the multiple scale procedure, the 

dt a a  a 
- .+ apt  + p a p q  + 1.2 ajaT2, -+- + f L  - . 
d ax, ax, ax, 

In  Fourier space, the spatial transformation can be modified by setting 

a kza+ k,, - ip-. ax, 
Thus taking the functions of k, and expanding them in Taylor series 

and, on performing the usual asymptotic analysis, we find the long-time be- 
haviour of the spectral amplitudes are (for the case p = E ,  namely where the 
non-linearity balances the packet spread) 

a ;I. (2) -a, + cz. Va, - aT Qeyal + O(,u2) 

= C a l i n n a Z 4  +P [ C &in{aZfn. V G  + aEfm. Va%) 
ki+k,, ,+k= 0 kt + km+ kn = 0 
~l+wIn+wn=o  Wl+W,.+ w, = 0 

~mmn2,amalLap +0(P2) .  (6.2) 
* * *I +CYz,aZapa;+ C 

P kr + k, + k. + kp = 0 
wr+wm+w,+w,=O 

where A, = ule-iWlt. 
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The left-hand side of (6.2) may be viewed as ‘acceleration’ terms describing the 
role of the group velocity vector and dispersion tensor; the right-hand side 
exhibits the non-linear forcing mechanism, the first due to  direct triad resonances, 
the second to sideband triad resonances, the third to modal interactions and the 
fourth to direct quartet resonances. The second term is the one which has not 
appeared before in the literature and to whose effect the main part of this paper 
is directed. The truncated system (p = 0)  will give the correct long-time be- 
haviour of the system for times T = O( 1) (or t = O( l / p ) ) ,  whereas for longer times 
t = O( I/,$),, the full equation (6.2) must be solved. A solution with general initial 
values a,(X,  0 )  is not known to this author. However, for the first closure in the 
case of interacting discrete waves, Bretherton (1964) has shown the solutions are 
periodic; Longuet-Higgins & Gill (1967) found elliptic function solutions for an 
interacting triad of Rossby waves under the special initial conditions which allow 
the sum of the phases of the complex amplitudes to be zero for all time. One may 
conjecture that at the first closure in an interacting triad of wave packets, one 
would find that the amplitudes were periodic functions along their group 
velocity lines. In a numerical scheme one can treat the group velocity lines as 
characteristics along which one can integrate from given initial values using the 
relations (3.8, 9). 

If k, represents a zonal flow (0, klu), then the coupling coefficient of the direct 
triad resonance mechanism is zero and thus the O(p) terms in (6.2) are the im- 
portant ones. In  the appendix we examine the acceleration of a zonal flow from 
a zero state using the data of Eliasen (1958) and show that accelerations of a 
a few km/day per day are possible. 

The possibility that the sideband resonances in internal waves are important 
is under investigation; in the Davis & Acrivos (1967) two-dimensional model, 
the coupling coefficient of the triad resonance producing a vertical shear flow is 
zero and thus the sideband mechanism may very well be important. 

Appendix 
We will discuss the case of the initial growth of a zonal flow due to the reson- 

ances with two discrete sidebands in the wave packets k,(kx, ku) and k,( - kx, ku). 
We find, using the data of Eliasen (1958) (also used by Kenyon (1966)) that zonal 
currents of a few kilometres per day can be generated. 

Consider equation set (3.15) linearized about a basic state 
a(!) = A ,  exp [iK, . (x - c1 T), 
a$’) = 0. 

a f )  = A ,  exp [iK, . (x - c,T)], 

The third equation in this set becomes 

x exp [ - i(K, + K,) .x+i(c,. K,+ c,. K,) TI. 
The response of the particular sideband. 

K, = - K, - K,, a, = b, exp [iK,. x] 
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of the zonal flow is 
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-4pk k 
@ ab3 - ' 3 ~ ( ~ l x  + "2x1 = a2 + 4k; "{k2.K2-k,.K,)exp[i(c,.K,+c,.K,)T]. 

Given K, ,  choose K ,  such that 

cl* K1 + C 2 * K 2  = C 3 2 ( K l z  f K2x)7 

which yields the locus in the (K2z ,  K 2 g )  plane 

w 2 x  + Kl2) + &y. (A 4) 
K,, - C l x - C 3 z  

C l Y  

The response of the zonal flow is 
This corresponds to the secondary resonance condition discussed earlier. 

a3 = A.F.~~~[-~(K~+KJ.X+~(C,.K,+~,.K~)T], 
where the amplification factor 

A.F. = - '" kZkv{k2.  K, - k,. K,) t 
a2 + 4k i  

grows linearly with time. The amplification of the zonal velocity 

where we have used (A4) and the values of k,, k,, c,, c2. Set 
k = ( k  cos 8, k sin 8))  02 = a2/k2, 

and the velocity amplification is 

(1 + v2) sin2 8(4 sin2 8 - 1) 
v2(v2 + 4 sin2 8 ) 2  

8p2t K3xa2 

which reaches maximum value on the contours 

on which contours, 

V 2  

4( 1 + 2v2) ' sin28 = 

p2t a2 
A.F. = - KaXv4 IAfA;I. 

2 

We use the data of Eliasen (1958)-also used and modified for a continuous ran- 
dom spectrum by Kenyon (1966)-and choose 

5 
earth radius ' k =  

corresponding to the wavelength of the maximum energy waves at the 500 m.b. 
level in the atmosphere, 479" north latitude. Choosing h = 106cm, the scale 
height of the atmosphere, g gravity = lo3 cm/sec2 and f,, = 2Q cos 47i  = 10-4 
sec-l, 

Thus 

a2 = 10-17 om-2 = 10-7 km-2. 

v2 = a2/k2 = O(l0-l) .  
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From (A 7 )  we conclude that the maximum amplification rate comes from waves 
whose wave vectors lie close to the east-west axis. In  fact 

sin 0 2r' 3v = O( 1/6). 

We use Kenyon's non-isotropic spectrum (figure shown below) as this has 
maximum wave intensities in the region sin 8 = O( 1/6). 

North 

West + 

6 

4 

2 

0 k R  

FIUUEE 1. Initial energy spectrum F ( k )  ; c0s4 0 spreading factor; 
contours of lo-? F (km3/day2). 

Assuming the initial amplitudes of wave modes 1, 2 to be the same, 

,u2t a2 
2 V 

A.F. = - o ( k )  3 1A [ '. 

Remember K = O ( k )  as - = O(p). Also ,uK k 1 
k21AI2 =j F ( k ) d k  = F ( k ) A k  = F ( k ) p k ,  

packet 
spread 

where F( k) = 3 x 108 km3/day2. 
For the range of packet spread suggested by figure 1, ,u = 6 to p = 2 -  10 

( =  O{sinO}), and for v2 = &, we obtain an acceleration of the zonal current of 
1-7 km/day per day. Thus, if the waves can exist for a number of days, they can 
produce appreciable zonal currents. 

Let us make two further remarks to  strengthen the hypothesis: first, as Ken- 
yon points out, for these wave intensities, the non-linearity 6 is larger than the 
package spread and would yield an extra factor e/p in the amplification rate; 
secondly, the effect of other possible modes (higher k, but same k,) would be 
cumulative (could possibly also cancel) and even though the wave intensities for 
higher k (shorter waves) are smaller, the factor l/v4 becomes larger for fixed a2. 

Note also, as we approach the equator a2 -+ 0 and thus it would seem that the 
strongest zonal currents could be generated there provided there exist planetary- 
like waves of sufficient intensity in this region. We hesitate to put this forward as 
an explanation of the Cromwell current, (maximum velocity 100 cmlsec), but 
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the possibility exists that long planetary-type ocean waves may be its driving 
mechanism. Perhaps the acid test would be to measure the slow spatial (east- 
west) and temporal behaviour of this current to see if it agrees with that suggested 
by (A 5 ) .  
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